
© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

13

Contributi/1

Alan Turing and the Cognitive
Foundation of the Concept of
Algorithm*
Simone Pinna

Marco Giunti

Articolo sottoposto a doppia blind peer review. Inviato il 08/12/2021. Accettato il 08/06/2022.

The work of Alan Turing (1936) set a milestone for the foundation of the concept of algorithm
by grounding the notion of effective procedure on a special type of real cognitive phenomenon,
namely, that of a human being performing rule-based symbolic transformations with the
only aid of paper and pencil. In this work, after a brief historical overview, we show how
Turing arrived at a negative solution of the decidability problem for first order logic and in
which sense Turing’s explication of the intuitive concept of effective procedure is sufficient
to justify Church’s Thesis. We then present a cognitive interpretation of Turing’s theory of
computation, according to which Turing machines are viewed as models of real phenomena of
mind-environment interaction.

Introduction

During the first decades of the 20th century a vast group of mathematicians
and logicians was involved in the precise definition of a series of foundational
concepts for mathematics. The theoretical background of these studies was the
so-called logicist project, i.e., the attempt to reduce all mathematics to logic.1
Logicists notably recognized Cantor’s set theory as a starting point for a rigorous
redefinition of all mathematical theories in logical terms.

Bertrand Russell’s discovery of a contradiction in Cantor’s set theory (the
Russell’s antinomy) marked the failure of the original logicist project. However,
the studies on the foundation of mathematics gained renewed impetus at the

* Supported by Fondazione Banco di Sardegna (FdS 2019, research grant n. F72F20000420007).
1 G. Frege, The Foundations of Arithmetic: A Logico-mathematical Enquiry into the Concept of
Number, Northwestern University Press 1968.

DOI: 10.5281/zenodo.7768560

0000-0001-9049-5585

0000-0003-4182-4850

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

14

beginning of the 20th century thanks to David Hilbert’s work. According to
Hilbert’s formalist project, any mathematical theory should be reduced to a pure
symbolic system, such that one must be able, only through the means provided
by the system, to prove the consistency of the theory. An outstanding problem in
the formalist framework is the problem of decidability (Entscheidungsproblem),
proposed in its most general version by Hilbert and Hackermann2: Is there any
effective procedure (or any algorithm) for deciding whether an arbitrary first-
order language statement is universally valid (i.e., a tautology, or a logical truth)
or not?

An important side problem of the Entscheidungsproblem is the rigorous
definition of the intuitive notion of effective calculability, or to find an adequate
method to set apart computable numerical functions from non-computable
ones, where computable numerical functions are those for which there exists an
algorithm (or an effective procedure) that, for any argument, returns the value
of the function in a finite number of steps. (For example, the function that
returns the n-th decimal digit of π is computable, but for most real numbers the
analogous function is not.)

In 1936,3 Alonzo Church proposed the λ-calculus as a way to express
in a rigorous formal manner the intuitive concept of effectively calculable
function. He proved that the class of functions defined within his calculus is in
fact equivalent to the class of recursive functions defined by Gödel.4 He then
proposed the following thesis (Church’s Thesis): «We now define the notion
[…] of an effectively calculable function of positive integers by identifying it
with the notion of a recursive function of positive integers (or of a λ-definable
function of positive integers)».

 According to Church, the fact that either recursiveness or λ-definability
captures the notion of effective calculability rests on intuitive considerations.
However, it is very difficult to find any similarity between a logical system such
as the λ-calculus and the ways human beings execute algorithms.

The work of Alan Turing (1936)5 set a milestone on this debate by
grounding the intuitive notion of algorithm on a special type of real cognitive
phenomenon, namely, that of a human being performing rule-based symbolic
transformations with the only aid of paper and pencil. In this work, after a brief
historical overview, we show how Turing arrived at a negative solution of the
Entscheidungsproblem, and in which sense Turing’s explication of the intuitive
concept of algorithm is sufficient to justify Church’s Thesis. We then propose a
cognitive interpretation of Turing’s theory of computation, according to which

2 D. Hilbert, W. Ackermann , Grundzüge der theoretischen logik, Springer Verlag, Berlin 1928.
3 A. Church, An unsolvable problem of elementary number theory, «Journal of Mathematics», 58,
1936, pp. 345-363.
4 K. Gödel, On Undecidable Propositions of Formal Mathematical Systems, 1934, in Davis, M.
(ed.), The Undecidable, Raven Press, Hewlett, New York, 1965, pp. 39-74.
5 A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem,
«Proceedings of the London Mathematical Society» (pp. 230–265), London 1936, Oxford
Journals.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

15

Turing machines are viewed as models of real phenomena of mind-environment
interaction.6

1. In Search of a Formal Notion of Algorithm

The most general formulation of the problem of decidability is the
following: Is there any effective procedure to decide, for an arbitrary first-order
language statement, whether it is universally valid (i.e., a tautology), or not?
According to Hilbert, this was the most important problem of mathematical
logic. Not only was first order logic at issue, but also any axiomatic theory based
on a finite number of axioms. For this kind of theories, indeed, the solution of
the problem of decidability would immediately yield an effective procedure to
determine whether any statement of the theory is a logical consequence of the
axioms or not.

In order to tackle the Entscheidungsproblem, however, a preliminary
problem to be solved was the formulation of a satisfying formal definition of
the intuitive concept of an effective procedure, or an algorithm. Intuitively, an
algorithm (or a mechanical or effective procedure) is a finite set of clear-cut
formal instructions for symbol manipulation. Given a finite collection of initial
data, a human being must be able to carry out such instructions in a definite
sequence of steps, with the exclusive aid of paper and pencil (or similar external
supports or devices), and without resorting to any special insight or ingenuity.
Note that, if a formal definition of algorithm were available, it would then be
possible to formally define the computable functions, namely, those functions
for which effective procedures to calculate their values do exist.

The solution to this preliminary problem is also clearly connected to the
problem of decidability, for the latter presupposes a clear definition of the notion
of an effective procedure. Moreover, once we have such a formal definition at
hand, we will be able to try out the following strategy: if an effective procedure to
decide the universal validity of any first order language statement does not exist,
then we may be able to actually produce a first order language statement for
which we can prove that there is no algorithm to decide whether it is universally
valid or not (i.e., whether it is a tautology or not).

1.1 Church’s Thesis

In 1936 Alonzo Church proposed λ-calculus as a formal method to
rigorously express the intuitive notion of an effectively calculable function.7
First, he proved that the class of λ-definable functions (namely, the functions

6 M. Giunti, S. Pinna, Toward a dynamical theory of human computation, «Logic Journal of the
IGPL», 24 (4), 2016, pp. 557-569; Wells, A., Rethinking cognitive computation: Turing and the
science of the mind (hereafter, Wells 2005), Basingstoke, UK (2005), Palgrave Macmillan.
7 A. Church, An unsolvable problem of elementary number theory, cit.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

16

definable in his λ-calculus) is equivalent to the class of recursive functions,
previously defined by Kurt Gödel). Then, he proposed the following thesis
(known thenceforth as Church’s Thesis):

We now define the notion, already discussed, of an effectively calculable function
of positive integers by identifying it with the notion of a recursive function of positive
integers (or of a λ-definable function of positive integers).

This definition is thought to be justified by the considerations which follow, so
far as positive justification can ever be obtained for the selection of a formal definition
to correspond to an intuitive notion.8

Church argued that an algorithm for computing a function exists if and
only if that function can be expressed as a string of symbols written in his logical
language or, equivalently, as a recursive function. However, he recognized that
he could not prove this claim, for there is no secure way (i.e., a formal proof) to
justify the identification of a formal definition with an intuitive notion. In other
words, this justification can only be obtained by an intuitive stance.

Here, we cannot give an even cursory presentation of Church’s λ-calculus.
However, some brief remarks on the equivalent theory of the recursive functions
may be useful to better understand the difference between Church’s and Gödel’s
approach on the one hand, and Turing’s one on the other. Similar to Church’s
λ-definability, recursivity theory provides us with a formal system to define a
class of computable functions. First of all, we start from the following three basic
primitive recursive functions:

[1] z(n) = 0 (zero function);
[2] id(n) = n (identity function);
[3] s(n) = n+1 (successor function).

Then, all other primitive recursive functions are defined by the following
rules:

Composition: a function is primitive recursive if it can be defined by
the application of a primitive recursive function to others primitive recursive
functions.

Recursion: a function f(x1, …, xn) of n≥1 arguments is primitive recursive if
the following two conditions are met:

[i] f(0, x2, …, xn) = g(x2, …, xn), where, if f has at least two arguments, g is
a primitive recursive function and some of its arguments may be missing. If f is
a single argument function, g is a zero argument function, namely, it is a natural
number;

8 Ibid., p. 356.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

17

[ii] f(s(x1), x2, …, xn) = h(f(x1, x2 ,…, xn), x1, x2, …, xn), where h is a primitive
recursive function and some of its arguments, except the first, may be missing.

Closure: nothing else is a primitive recursive function.

In a recursive definition the value of a function is the result of the application
of the same function to smaller arguments, in a process named recursion. Consider
the definition of the two arguments function addition, denoted by a (x1, x2), as
a primitive recursive one:

[4] a(0, x2) = id(x2)
[5] a(s(x1), x2) = s(a(x1, x2))

The function a(x1, x2) is primitive recursive, for it meets both conditions
of the rule of recursion. Indeed, condition [i] is met by equation [4], for id is
primitive recursive; moreover, condition [ii] is met by equation [5] for, in the
second member of the equation, s is a primitive recursive function with a single
argument.

We now illustrate by an example how the recursive definition of addition
is used in calculation. Let us take x1 = 2 and x2 = 2 . By equation [3] we know
that s(2) = 3, then, with this setting (by equation [5]), we are going to calculate
the sum 3+2.

We start the computation by applying equation [5] to the chosen values of
x1 and x2, then we decrease x1 by 1 at each step, until x1 = 0, as in the following
series of equations:

a(3, 2) = s(a(2, 2))
a(2, 2) = s(a(1, 2))
a(1, 2) = s(a(0, 2))

Here, by [4] and [2], we arrive at the only result explicitly defined by the
function, namely, the case where x1 = 0. Knowing that a(0, x2) = x2, we can now
substitute the result thus obtained for the case x1 = 0; then, we increase x1 by 1 at
each step, until x1 = 2, as in the following series of equations:

a(1, 2) = s(2) = 3
a(2, 2) = s(3) = 4
a(3, 2) = s(4) = 5

Here we have focused only on primitive recursive functions, but to cover all
recursive functions we would have to present the more complex theory of general
recursive functions, which is beyond the scope of the present paper. However,
the previous explanation is sufficient for our purpose, that is, to provide the
reader with a clear understanding of the peculiar kind of procedure by which a
recursive function is computed.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

18

We have seen above that a justification of Church’s Thesis can be obtained
only from an intuitive point of view. However, the fact that, for any function
computable by an effective procedure, this function must also be definable in terms
of recursiveness (or, equivalently, of λ-definability) is not intuitively implied by
the notion of a recursive (or λ-definable) function. Indeed, the formal methods
individuated by Church and Gödel are highly abstract and profoundly different
from the calculation procedures we normally use (for example, the algorithms
used for carrying out simple arithmetical operations with paper and pencil). Due
to these reasons, Church’s Thesis was initially deemed as materially inadequate
and, ultimately, not adequately justified, because it lacked a sufficiently strong
argument to ensure that all the numerical functions computable by a human
being through the application of appropriate rules were captured by the class of
recursive or λ-definable functions.

1.2 Turing’s analysis of human computation

Turing’s work9 tackled the problem of explicating the notion of effective
calculability by a totally different stance. His major concern was the definition of
a theory of computation rigorously modeled on concrete phenomena of human
computation, namely, on the actual procedures carried out by a human being
that is calculating with the aid of paper and pencil. The analysis of this kind of
phenomena needs a previous consideration of human cognitive abilities and
limits.

Turing argues that his computing machines (known thereafter as Turing
machines) capture the intuitive notion of an algorithm. This claim is justified by
an analogical argument, namely, an inductive argument which correlates two or
more phenomena in order to substantiate the hypothesis that they share some
characteristic property. For example, (1) consider an object a whose characteristic
property p we are interested in is known, then (2) notice that some essential
features of a are similar to those of another object b ; given these similarities we
can claim that (3) a and b likely share p.

Turing’s argument starts from the consideration of a type of real cognitive
phenomenon, namely, the fundamental operations that we can observe in a
human being carrying out a computation with paper and pencil. Turing explicitly
refers to this kind of phenomena, as in the following quotation:

Computing is normally done by writing certain symbols on paper. We may
suppose this paper is divided into squares like a child’s arithmetic book. In elementary
arithmetic the two-dimensional character of the paper is sometimes used. But such
a use is always avoidable, and I think that it will be agreed that the two-dimensional
character of paper is no essential of computation. I assume then that the computation
is carried out on one-dimensional paper, i.e., on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we were to allow

9 A. M. Turing, On computable numbers, cit.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

19

an infinity of symbols, then there would be symbols differing to an arbitrarily small
extent.10

In this passage, Turing focuses on the individuation of the fundamental
elements of human computation, by eliminating all those features that are
inessential to the calculations performed by a human being. This is to be intended
in the sense that they complicate the algorithm without yielding any gain with
respect to the results that can be computed. The two-dimensional paper sheet
is thus considered inessential in this sense, for it is always replaceable by a
unidimensional tape divided into squares. By contrast, the assumption that the
number of symbols that a ‘computer’ (i.e., according to Turing’s terminology,
a human being who computes) is able to recognize at a glance must be finite is
essential, for it directly depends on human cognitive limits. Another inessential
feature is the compositional character of the mental states used while computing.

We may suppose that there is a bound B to the number of symbols or squares
which the computer can observe at one moment. If he wishes to observe more, he must
use successive observations. We will also suppose that the number of states of mind
which need be taken into account is finite. […] Again, the restriction is not one which
seriously affects computation, since the use of more complicated states of mind can be
avoided by writing more symbols on the tape.11

It is hard to avoid the impression that Turing is considering the physical
limitations we need to impose on a computing machine rather than the cognitive
limitations of a computing human being. This is partly due to our present usage
of the word ‘computer’, as a synonym of ‘digital computer’. However, the concept
of a digital computer as the physical machine we are used to was unknown in
the mid-1930s. A thorough reading of Turing’s argumentation should convince
even the most skeptical reader. Consider, for example, the following passage on
the identifiability of symbols:

In most mathematical papers the equations and theorems are numbered.
Normally the numbers do not go beyond (say) 1000. It is, therefore, possible to
recognize a theorem at a glance by its number. But if the paper was very long, we might
reach Theorem 157767733443477; then, further on in the paper, we might find “...
hence (applying Theorem 157767733443477) we have […]”. In order to make sure
which was the relevant theorem we should have to compare the two numbers figure by
figure, possibly ticking the figures off in pencil to make sure of their not being counted
twice.12

 It is obvious that this argument makes sense only if we consider human
cognitive limits rather than general physical limits, we can impose on a computing
machine. After the identification of the essential elements of computation,

10 Ibid., pp. 249.
11 Ibid., p. 250.
12 Ibid., p. 251.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

20

Turing analyzes the behavior of a computer that conforms to all the imposed
limitations.

The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his ‘state of mind’ at that moment. [...]

Let us imagine the operations performed by the computer to be split up into
‘simple operations’ which are so elementary that it is not easy to imagine them further
divided. Every such operation consists of some change of the physical system consisting
of the computer and his tape. We know the state of the system if we know the sequence
of symbols on the tape, which of these are observed by the computer (possibly with a
special order), and the state of mind of the computer. We may suppose that in a simple
operation not more than one symbol is altered. Any other changes can be split up into
simple changes of this kind.13

Now Turing describes how to build into a computational model all the
elements needed to describe the essential work of a human computer, namely,
the simple operations drawn from the analysis of the real cognitive phenomenon
he considers.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares of
one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of
mind. The most general single operation must therefore be taken to be one of the
following:

(A) A possible change (a) of symbol together with a possible change of state of
mind.

(B) A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined [...] by the state of mind of the
computer and the observed symbols. In particular, they determine the state of mind of
the computer after the operation is carried out.

We may now construct a machine to do the work of this computer.14

All the functional features of Turing’s computational models listed in this
quotation are drawn from his analysis of human computation. The intuitive
force of his definition of an effective procedure, in fact, arises from the analogy
between the description of a class of real phenomena and the operations carried
out by his ideal models. The (negative) solution to the problem of decidability

13 Ibid., p. 250.
14 Ibid., p. 251.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

21

he proposes (see §1.3) is based on the same analogy. Indeed, by this analogical
argument it is possible to justify the general thesis according to which Turing
machines can execute all and only the essential computational procedures that a
human being can, in principle, carry out in a finite amount of time with the only
aid of paper and pencil or similar external resources, and without resorting to
any special insight or ingenuity. In a nutshell, Turing’s Thesis can be formulated
as follows: Turing machines are adequate ideal models of human computation.

It is worth noting that the class of computable functions individuated by
Turing is identical to that individuated by Church. Turing himself15 proved that
the class of all numerical functions computable by his machines (henceforth,
Turing-computable functions) is identical to the class of λ-definable ones. Turing’s
argument, then, also supplies a strong intuitive justification to Church’s Thesis,
overcoming the theoretical impasse described above (§1.1).

 2. Turing’s Negative Solution of the Entscheidungsproblem

Turing’s strategy for the negative solution of the decidability problem
consists of two main moves. First, he identifies the intuitive notion of an
effective procedure with the formal operations carried out by his computing
machines (Turing’s Thesis), and intuitively justifies this identification through
an analogical argument (§1.2). Second, he employs this identification to
justify Church’s Thesis, which can be stated as the claim that the class of all
computable functions (in the intuitive sense) is a subclass of the class of all
Turing-computable functions. This finally allows him to prove by reductio that
there is no algorithm that decides whether an arbitrary first order sentence is a
logical truth (or a tautology). Turing remarks16 that his result is sensibly different
from the incompleteness result obtained by Gödel.17 While the latter proved that
any consistent minimally expressive axiomatic theory18 is incomplete – for there
is always a particular sentence of the theory that cannot be proved or disproved
within the theory itself – Turing shows that there is no algorithm capable to
decide, for any sentence of a first order language, whether it is universally valid.

2.1 Essential elements of Turing machines

To fully understand Turing’s proof, it is necessary to briefly introduce the
notion of a Turing machine (TM). A TM is made up of the following components:

15 Ibid., Appendix.
16 Ibid., p. 259.
17 K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme, I, «Monatshefte für Mathematik und Physik», 38 (1931), 173-198.
18 For a ‘minimally expressive axiomatic theory’ we mean a theory that is able to express and
prove at least what can be proved in elementary arithmetic (see M. L. Dalla Chiara, La logica,
Milano 1974, §1.5).

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

22

1. A finite automaton consisting of
- a simple input-output device that implements a specific set of instructions

(machine table);
- an internal memory that holds only one discrete element at each step

(internal state) and
- an internal device (read/write head) that can scan and change the content

of the internal memory.
2. An external memory consisting of a tape divided into squares, potentially

extendible in both directions ad libitum;
3. an external device (read/write/move head) that scans the content of a

cell at a time and allows the finite automaton to work on the memory tape.

At each step of a computation, the external device scans one cell of the
tape and changes its content in accordance with the symbol written on the cell
and its present internal state (as scanned by the read/write head in the internal
memory). The rules for symbol transformations are specified in the machine
table, which is a non-empty set of quintuples of the form <qi , sj : sk , M, qr>. No
two quintuples of the machine table can begin with the same pair of symbols
<qi , sj>. The pair <qi , sj> in the first part of a quintuple represents the input,
where the first symbol is taken from a finite set Q = { q1 , q2 , …, qn } of internal
states and the second from another finite set S = { s1 , s2 , …, sm , b } of symbols,
which represents the vocabulary of the tape and includes at least two symbols,
one of which, i.e., b (the blank), means that the content of the cell is null. The
number of tape cells is always finite, but it can be increased as needed by adding
blank cells. The triple < sk , M, qr > in the second part of a quintuple represents
the output, where the first and the third symbol are taken, respectively, from
the above mentioned sets { S } and { Q }, while M represents one of the possible
movements of the external head on an adjacent cell of the tape with respect
to the presently scanned one (L for ‘move left’ and for ‘move right’) or a null
movement (H for ‘halt’). Each single quintuple of a machine table, then, can
be interpreted as a conditional instruction that tells the machine: ‘if you read qi
in your internal memory and sj on the tape, then substitute sk for sj on the tape,
qr for qi in the internal memory, and move the external head according to M’.
The machine stops computing if and only if the current internal state qi and the
scanned symbol sj do not correspond to the initial pair of any quintuple in the
machine table, or the corresponding quintuple has the form < qi , sj : sj , H, qi >.

Turing introduces some important conventions in his notation. He
distinguishes between two types of symbols that form the vocabulary of the tape:
‘symbols of the first type’, or figures, are only 0 and 1 – they are used to encode
the binary representation of an arbitrary real number. All the others are ‘symbols
of the second type’. Let an arbitrary TM start computing from a given initial
state on a blank tape. The sequence of all figures that the machine writes on the
tape while it is computing is called the sequence computed by the machine. Any

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

23

such sequence can be interpreted as the binary representation of a real number,19
which can thus be said to be computed by the machine as well. A TM is called
circular if, when started on a blank tape, it eventually stops computing or it
writes at most a finite number of figures. Otherwise, it is said to be circle free.
An infinite sequence of figures (or the corresponding real number) is computable
if there is a circle free TM such that, when started on a completely blank tape,
produces that sequence.

2.2 Turing’s proof

Consider that the set of all TMs is enumerable (namely, it can be put in
one-one correspondence with the set of natural numbers). In the first place, any
TM can be identified with its machine table. A machine table, indeed, consists
of a set of quintuples drawn from a finite vocabulary, and the set of all symbol
strings which can be built on this vocabulary is enumerable. In the second
place, any machine table may be seen as a single symbol string made up by
concatenating its quintuples. Hence, the set of all machine tables is enumerable
as well, because it is a decidable subset of the set of all symbol strings.

Once we have the list of all possible TMs at hand, we can assign each of
them a description number, namely a number, obtained through a process named
Gödelization,20 that completely represents a specific machine table.

Now we have all the notions needed to understand Turing’s negative solution
of the decision problem. Assuming Turing’s Thesis, as specified at the end of
§1.2, his negative solution of the decision problem derives from the preliminary
solution of another more specific problem, known as the satisfactoriness problem,
which is a type of halting problem: Is it possible to find a TM that decides
whether an arbitrary TM is circle free?

Once he has demonstrated that the satisfactoriness problem is unsolvable,
Turing considers a second problem, called printing problem:21 Is it possible to
find a TM that decides, in a finite number of steps, whether an arbitrary TM will
eventually print a 0 on the tape?

Turing then proves that, if the printing problem is solvable, the
satisfactoriness problem is solvable as well. But we already know that the latter
is unsolvable. Then we conclude (for modus tollens), that the printing problem
is unsolvable as well.

The last step towards the solution of the decision problem concerns the
translation of any TM in formulae of a first-order language. This way, it is possible

19 More precisely, Turing takes the sequence computed by a machine to represent any real
number whose decimal part, expressed in binary, is equal to that sequence. To avoid confusion,
then, he focuses in his 1936 paper on computable sequences, rather than computable numbers
(A. M. Turing, On computable numbers, cit., p. 233).
20 See G. S. Boolos, J. P. Burgess, R. C. Jeffrey, Computability and logic, Cambridge University
Press, Cambridge, England (2002), § 4.1.
21 The following explanation is drawn from A. Wells, Rethinking cognitive computation: Turing
and the science of the mind, Palgrave McMillan, Basingstoke, 2005, Ch. 15.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

24

to interpret the computational steps of a TM as subsequent steps in a first order
logic proof. Turing is then able to produce a first order formula, Un(M), which
expresses the following proposition: ‘In some complete configuration of M, 0 is
written on the tape’. It is thus possible to prove that the following implications
are true:

(a) if, in some complete configuration of M, 0 is written on the tape, then Un(M)

is provable in first order logic;
(b) if Un(M) is provable in first order logic, then, in some complete configuration

of M, 0 is written on the tape.

The conjunction of a and b tells us that Un(M) is provable in first order
logic if and only if M will write 0 on the tape; but we already know that the
printing problem is unsolvable. The conclusion is that no algorithm can
determine whether a specific first-order statement, namely Un(M), is provable in
first order logic. But this entails that no general algorithm exists that can decide,
for any first order statement, whether it is universally valid or not. Therefore, the
decision problem is unsolvable.

It is important to note that, even though Turing’s negative solution of the
Entscheidungsproblem is the result of a formal proof, his argument ultimately
relies on the intuitive correspondence between the computational processes of
a TM and his analysis of human computation, that is to say, on the intuitive
justification of Turing’s Thesis.

3. The Cognitive Relevance of Turing’s Work

We have seen in the last section a rigorous formal proof which is ultimately
based on the intuitive correctness of the underlying analysis of human cognitive
powers and limits. The fact that a mathematical proof could be based on intuitions,
however, should not surprise the reader. The link between mathematical proofs
and cognitive performances has been highlighted, e.g., by Giuseppe Longo,22 who
notes that the notion of order, on which a large part of mathematical reasoning
relies, is founded on cognitive notions such as the mental number line, through
which we can internally ‘observe’ the geometrical relations between numbers.

Turing explicitly recognizes the importance of a serious cognitive analysis
for the faithful formal characterization of an intuitive notion. However, this
point represents only an indirect contribution to the study of cognition. We
propose that Turing’s work may be thought of as an attempt to characterize
a specific class of cognitive phenomena, namely, the phenomena of human
computation. In this section we present, first, Wells’ interpretation of Turing’s
theory of computation, which considers Turing machines as models of mind-

22 G. Longo, Reflections on Concrete Incompleteness, «Philosophia Mathematica», 19, 3, 2011,
pp. 255-280 (p. 256).

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

25

environment interaction.23 Second, we propose a methodological interpretation
of Turing’s Thesis that suggests a precise line of research in cognitive science,
according to which algorithmic skills are seen as a set of cognitive capacities that
deserve to be studied on their own.

3.1 TMs as models of mind-environment interaction

A long established tradition in cognitive science considers Turing as a
precursor of classic computationalism, according to which cognition is seen as the
result of purely internal rule-based symbolic transformations. The major reasons
for ascribing Turing’s thought to this theoretical framework are fundamentally
two: 1) classic computationalism considers the digital computer as a model of
the mind, and the ideal prototype of a digital computer is the universal Turing
Machine;24 2) Turing implicitly advocated the computational theory of mind,25 a
basic tenet of classic computationalism, in his famous 1950 article, published
in the philosophical journal Mind, where he proposed the imitation game as a
test for machine intelligence.26 There, he pointed at digital computers as good
candidates for playing this game, and was confident that machines of this kind
would eventually pass the test, thus showing intelligence and thought. But, as
Turing claimed, a digital machine would pass the test in force of the right kind
of algorithms it would execute. Thus, intelligent thought processes would be
nothing over and above algorithmic activities.

Nevertheless, the ascription of Turing’s thought to classic computationalism
is marked by a fundamental misunderstanding, which consists in considering
the external tape of a TM as an internal memory.27 This misinterpretation leads
to a view of cognition in which all cognitive activities are made up of rule based
transformations of internal symbols, which encode either the mental or the
environmental features relevant to a given cognitive task. But we have seen, on

23 Op. cit.; A. Wells, Turing’s analysis of computation and theories of cognitive architecture, «Cog-
nitive Science», 22, 1998, 269–294.
24 A. M. Turing, On computable numbers, §6. A universal TM is a TM that can emulate the
work of any other TM. To this purpose, the tape of the universal TM is split into two parts
by a symbol that is never canceled or overwritten during the computation. On one part of the
tape (say the right one), the machine table of the object TM (i.e., the TM to be emulated) is
encoded, while on the other part the universal TM keeps a representation of the other com-
ponents of the object TM (the internal and the external memory with the respective contents,
and the position of the external head). The analogy with a digital computer is straightforward:
the machine table of the universal TM corresponds to the hardware of a digital computer (spe-
cifically, to its CPU), while the quintuples of the object TM, encoded on the right part of the
tape, correspond to the software, namely, to the program in use.
25 The computational al theory of mind claims that all thought processes have an algorithmic
nature.
26 A. Turing, Computing machinery and intelligence, «Mind», 59(236), 1950, 433-460.
27 See A. Wells, Rethinking cognitive computation: Turing and the science of the mind, Basingstoke
2005, for a theoretical analysis of this misunderstanding and its consequences for the status of
Turing’s theory of computation with respect to the philosophy of mind and the philosophy of
cognitive science.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

26

the contrary (§1.2), that the tape of a TM is an abstraction of ‘a child’s arithmetic
book’, so that it is to be considered as a part of the external environment used to
carry out the cognitive task. By a cognitive point of view, then, a computation
is not just a sequence of transformations of symbols of the internal vocabulary
of the machine, but it consists in operations on external symbols, namely, on the
symbols of the vocabulary of the tape. These symbols represent environmental
features that need not be internalized in order to carry out the cognitive task,
because in most cases their internalization would only result in wasting cognitive
resources.

If we consider the mind as a computer analogy from this perspective, and
take a universal TM, instead of a digital computer, as a model of cognition,
the resulting view turns out to be very different from classic computationalism.
For, now, not only symbols (as shown above), but also programs need not be
internalized in order to be executed. This is tantamount to saying that a cognitive
system may not keep the rules of behavior it needs to survive in an internalized
library of programs. On the contrary, the external world itself may supply the
cognitive system with the symbolic structures needed to adapt its behavior to
a continuously changing environment. From this perspective, then, Turing’s
cognitive view can no longer be seen as a precursor of classic computationalism,
but it is more akin to recent approaches to cognitive science such as embodied/
extended cognition and the dynamical approach to cognition.

3.2 The methodological interpretation of Turing’s Thesis

Wells’ interpretation of Turing’s cognitive view, on which the previous

section is based, expresses an original position in the philosophy of mind
(named ecological functionalism) which is relevant to the debates on classic vs
new cognitive science28 and on the status of the computational theory of mind.29
However, it is not clear how to use this interpretation of a TM as a general model
of cognition to actually study real cognitive phenomena. To this purpose, we
need a step back to the motivations underlying Turing’s choices for the design of
his computational models.

As we have seen, Turing’s proof (§2.2) is based on an analogical argument,
namely, it presupposes that the simple operations carried out by a TM are an
idealization of those performed by a human being that executes an algorithm
with the exclusive aid of paper and pencil. We then proposed the following
formulation of Turing’s Thesis: Turing machines are adequate ideal models of
human computation. But how could we define the type of cognitive phenomenon
of which TMs are ideal models? Let us call it phenomenon of human computation.
By this expression we mean any activity of a human being that consists in

28 A. Newen, L. De Bruin, S. Gallagher, (Eds.) The Oxford handbook of 4E cognition, Oxford
University Press, New York (NY) 2018.
29 R. A. Wilson, Wide computationalism, «Mind», 103(411), 1994, 351-372; G. Piccinini,
Computationalism in the philosophy of mind, «Philosophy Compass», 4(3), 2009, 515-532.

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

27

the deliberate and controlled execution of a given algorithm, i.e., a purely
mechanical or effective procedure. Any specific instance of a phenomenon of
human computation is thus uniquely individuated by its particular task, which
consists in the request of executing a specified algorithm. An algorithm (or a
mechanical or effective procedure) is a finite set of clear-cut formal instructions
for symbol manipulation. Given a finite collection of initial data, a human being
must be able to carry out such instructions in a definite sequence of steps, with
the exclusive aid of paper and pencil (or similar external supports or devices),
and without resorting to any special insight or ingenuity.

We have also seen that a TM is a highly idealized model of a human
computer that, given these idealization, is not per se fit to model the whole variety
of phenomena of human computation. In fact, standard TMs are able to model
only a small class of this kind of cognitive phenomena, namely, those that can
be carried out on a unidimensional tape. This means that all the algorithms that
need a bidimensional paper (like the standard column algorithms for solving
the four basic arithmetical operations) could not be modeled by TMs. And we
would even need one more dimension to solve, for example, a Rubick’s cube, or
any other cognitive task involving the execution of some algorithm on a three-
dimensional support. If we want to design a model of the full set of phenomena
of human computation, we then need to somehow soften these idealizations by
retaining the basic cognitive insight of Turing’s analysis.

To sum up, we can thus formulate the following methodological interpretation
of Turing’s Thesis: The kind of model adequate to describe and explain all phenomena
of human computation is to be searched as an appropriate generalization of Turing’s
machines, which preserve their structure and basic design.

3.3 Dynamical models of human computation

In §3.1 we have seen an interpretation of TMs as models of mind-
environment interaction, where the tape of a TM is seen as the external
environment on which symbol transformation is performed. Taking a cue from
this view, we propose an interpretation of TMs as idealized dynamical models
of human computation. Turing himself, indeed, individuated the three main
components of these dynamical models:30 the internal state, the position of the
external head and the content of the tape. In order to fulfill the methodological
interpretation of Turing’s Thesis, then, we propose the definition of an Enhanced
Turing Machine (ETM) as a dynamical model of the full variety of the phenomena
of human computation.

An ETM is a dynamical model which satisfies the following three
requirements:

30 «We know the state of the system if we know the sequence of symbols on the tape, which of
these are observed by the computer (possibly with a special order), and the state of mind of the
computer». (A. M. Turing, On computable numbers, p. 250).

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

28

1. Its instantaneous state has the three components individuated by Turing:
q = internal state, p = head position, c =content of the external support;

2. its basic actions should be the three ones also individuated by Turing:31
(i) the head reads the whole content of a finite neighborhood (read/write
neighborhood) of its present location, but then changes the symbol of just one
cell of this neighborhood; (ii) the head moves from its present location to a
new one within a fixed finite neighborhood (move neighborhood) of the present
location; (iii) the machine changes its internal state;

3. finally, the global transition function of an ETM should satisfy the
constraint that Turing pointed out:32 At each time step, the next instantaneous
state of the machine should be completely determined by the present internal
state and by the present content of the read/write neighborhood (scanned
content), by means of the three basic actions. More precisely, this means that
the present internal state and the scanned content should determine (i.a) the
cell of the read/write neighborhood whose present symbol is to be changed and
(i.b) the new symbol to be substituted for the present one in such a cell; (ii) the
cell of the move neighborhood where the head is going to relocate; (iii) the new
internal state.

These three requirements represent, in our view, the distillation of the
cognitive insight on which Turing’s theory of computation is based. A model
satisfying these requirements is thus a good candidate for an adequate description
and explanation of the phenomena of human computation in all their variety. We
proposed elsewhere33 a dynamical theory of human computation based on a type
of dynamical model (named Algorithmically enhanced Turing Machine – ATM)
that satisfies the above requirements, but we cannot give here the details of
these models. In the present paper, our aim has been to highlight the cognitive
foundation of Turing’s theory of computation and how it is relevant not only to
the history of the concept of algorithm, but also to the philosophy of cognitive
science and to the scientific study of a specific type of cognitive phenomena.

31 See footnote 13 of the present paper.
32 «The operation actually performed is determined [...] by the state of mind of the computer
and the observed symbols. In particular, they determine the state of mind of the computer after
the operation is carried out» (A. M. Turing, On computable numbers, cit., p. 251).
33 M. Giunti, S. Pinna, Toward a dynamical theory of human computation, «Logic Journal of
IGPL», 24 (4), 557-569.

Simone Pinna
Università degli studi di Cagliari
* simonepinna@hotmail.it

Marco Giunti
Università degli studi di Cagliari
* giunti@unica.it

© Lo Sguardo - rivista di filosofia
N. 34, 2022 (I) - Algoritmo

29

References

Primary Sources

Church, A. 1936. An unsolvable problem of elementary number theory, «Journal
of Mathematics», 58, pp. 345-363.

Giunti, M., Pinna, S. 2016. Toward a dynamical theory of human computation,
«Logic Journal of IGPL», 24 (4), 557-569.

Gödel, K. 1931. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme, I, «Monatshefte für Mathematik
und Physik», 38, pp. 173-198.

Gödel, K. 1934, On Undecidable Propositions of Formal Mathematical Systems,
in Davis, M. (ed.) 1965. The Undecidable, Raven Press, Hewlett, New
York, pp. 39-74.

Turing, A. M. 1936. On computable numbers, with an application to the
Entscheidungsproblem, «Proceedings of the London Mathematical
Society» (pp. 230–265), London, Oxford Journals.

Turing, A. M. 1950. Computing machinery and intelligence, «Mind», 236(59),
pp. 433-460.

Wells, A. 1998. Turing’s analysis of computation and theories of cognitive
architecture, «Cognitive Science», 22, 269–294.

Wells, A. 2005. Rethinking cognitive computation: Turing and the science of the
mind, Palgrave McMillan, Basingstoke.

Secondary Literature

Boolos, G. S., Burgess, J. P., Jeffrey, R. C. 2002. Computability and logic,
Cambridge University Press, Cambridge, England.

Dalla Chiara, M. L. 1974. La logica, Isedi, Milano.
Longo, G. 2011. Reflections on Concrete Incompleteness, «Philosophia

Mathematica», 19, 3, pp. 255–280.
Newen A., De Bruin L., Gallagher S. (Eds.) 2018. The Oxford handbook of 4E

cognition, Oxford University Press, New York (NY).
Piccinini, G. 2009. Computationalism in the philosophy of mind, «Philosophy

Compass», 4(3), pp. 515-532.
Wilson, R. A. 1994. Wide computationalism, «Mind», 103(411), pp. 351-372.

