Notes for a Political Epistemology of Algorithms

ARTICOLI / 1 / Massimiliano Badino /

DOI


Algorithms are everywhere: they watch us, they give us advice, sometimes they take autonomous decisions. They are agents mediating between reality and us by virtue of their capability to treat huge amounts of data and to see patterns that are invisible to us. It is pretty clear that they are political actors by virtue of their epistemic features. In this article, I try to put together these two points and outline a political epistemology of algorithms. Firstly, I define political epistemology as concerned with epistemic performances that are essentially situated and therefore political all the way down. Secondly, I show that, in this sense, an epistemic analysis of algorithms cannot help being a piece of political epistemology. 

Download


References 

  • Alfano, M., Emily, S. 2021. Online Trust and Distrust, in The Routledge Handbook of Political Epistemology (ed. M. Hannon and J. De Ridder), New York: Routledge, pp. 480-91. 
  • Angwin, J., Larson, J. 2016. Machine Bias, «ProPublica», https://www.propublica. org/article/machine-bias-risk-assessments-in-criminal-sentencing. (23.5.2016). 
  • Badino, M., Gerardo I., Omodeo, P. D., 2022. Epistemologia Storica. Rome: Carocci. 
  • Binns, R. 2018. Fairness in Machine Learning: Lessons from Political Philosophy, «Journal of Machine Learning Research», 81, pp. 1-11. 
  • Caliskan, A., Bryson J. and Arvind Narayanan, A., 2017. Semantics Derived Automatically from Language Corpora Contain Human-like Biases, «Science», 356 (6334), pp. 183-86. 
  • Chun, M., 2022. Beyond Technocracy and Political Theology: John Dewey and the Authority of Truth, «Philosophy & Social Criticism», February, pp. 1-27. 
  • Clark, A., and Chalmers, D., 1998. The Extended Mind, «Analysis», 58 (1), pp. 7-19. 
  • Daston, L., and Galison, P., 2010. Objectivity, Princeton: Zone Books. 
  • Coeckelbergh, M. 2020. AI Ethics. Cambridge, MA: The MIT Press. 
  • Coeckelbergh, M. 2022. The Political Philosophy of AI. Cambridge: Polity Press. 
  • Edenberg, E., and Hannon, M. (eds.) 2021. Political Epistemology. Oxford: Oxford University Press. 
  • Floridi, L. 2010. Information: A Very Short Introduction. Oxford: Oxford University Press. 
  • Floridi, L. 2011. The Philosophy of Information. Oxford: Oxford University Press. 
  • Freitag, C., Mike Berners-Lee, M., Widdicks, K., Knowles, B.. Blair, G. S., and Friday, A., 2021. The Real Climate and Transformative Impact of ICT: A Critique of Estimates, Trends, and Regulations. «Patterns», 2 (9), p. 100340. 
  • Fricker, M. 2007. Epistemic Injustice. Power and the Ethics of Knowing. Oxford: Oxford University Press. 
  • Fricker, M., Graham, P. J., Henderson, D. K., and Pedersen, N., 2020. The Routledge Handbook of Social Epistemology. London: Routledge. 
  • Geman, S., Bienenstock, E., and Doursat, R., 1992. Neural Networks and the Bias/Variance Dilemma, «Neural Computation», 4 (1), pp. 1-58. 
  • Goldman, A. I. 1999. Knowledge in a Social World. Oxford: Oxford University Press. 
  • Hannon, M., and de Ridder, J., eds. 2021. The Routledge Handbook of Political Epistemology. Routledge Handbooks in Philosophy. New York: Routledge. 
  • Henderson, D. K. 2020. On the Background of Social Epistemology. In The Routledge Handbook of Social Epistemology, eds. M. Fricker, P. J. Graham, D. K. Henderson and Nikolaj J. L. L. Pedersen, London: Routledge, pp. 3-9. 
  • Hinsch, W. 2022. Differences That Make a Difference: Computational Profiling and Fairness to Individuals. in The Cambridge Handbook of Responsible Artificial Intelligence, eds. S. Voeneky, Ph. Kellmeyer, O. Mueller and W. Burgard, Cambridge University Press, pp. 229-51. 
  • Hogan, M. 2018. Big Data Ecologies. «Ephemera: Theory & Politics in Organizations Patterns», 18 (3), pp. 631-57. 
  • Kearns, M., and Roth, A., 2020. The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Oxford: Oxford University Press. 
  • Lucivero, F., 2020. Big Data, Big Waste? A Reflection on the Environmental Sustainability of Big Data Initiatives. «Science and Engineering Ethics», 26 (2), pp. 1009-30. 
  • Lum, K., and Isaac, W., 2016. To Predict and Serve?, «Significance», 13 (5), pp. 14-19. 
  • Omodeo, P. D., 2019. Political Epistemology: The Problem of Ideology in Science Studies. Berlin: Springer International Publishing. 
  • Rini, R., 2021. Weaponized Skepticism. An Analysis of Social Media Deception as Applied Political Epistemology, in Political Epistemology, eds. by E. Edenberg and M. Hannon, Oxford: Oxford University Press, pp. 31-48. 
  • Rolnick, D., Donti, P. L., Kaack, L., Kochanski, K., Lacoste, A., Sankaran, K., Slavin A., et al. 2019. Tackling Climate Change with Machine Learning. arXiv. http://arxiv.org/abs/1906.05433. 
  • Rouse, J. 1987. Knowledge and Power. Cornell University Press. 
  • Rouse, J. 1996. Engaging Science: How to Understand Its Practices Philosophically. Ithaca, NY: Cornell University Press. 
  • Strubell, E., Ganesh A., and McCallum, A., 2019. Energy and Policy Considerations for Deep Learning in NLP, arXiv. http://arxiv.org/abs/1906.02243. 
  • Sweeney, L., 2013. Discrimination in Online Ad Delivery: Google Ads, Black Names and White Names, Racial Discrimination, and Click Advertising, «Queue», 11 (3): 10–29. 
  • Tamburrini, G., 2022. The AI Carbon Footprint and Responsibilities of AI Scientists, «Philosophies», 7 (1), p. 4. 
  • Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., and Floridi, L., 2021. The Ethics of Algorithms: Key Problems and Solutions. «AI & Society», February.
  • Von Ungern-Sternberg, A., 2022. Discriminatory AI and the Law: Legal Standards for Algorithmic Profiling. In The Cambridge Handbook of Responsible Artificial Intelligence, eds. S. Voeneky, Ph. Kellmeyer, O. Mueller and W. Burgard, Cambridge University Press, pp. 252-78. 
  • Wolpert, D. H. 1996. The Lack of A Priori Distinctions Between Learning Algorithms, «Neural Computation», 8 (7), pp. 1341-90. 
  • Wolpert, D. H., and Macready, W. G., 1997. No Free Lunch Theorems for Optimization. «IEEE Transactions on Evolutionary Computation», 1 (1): 67–82.
Lo Sguardo è un progetto full open access. Puoi scaricare gratuitamente tutto il nostro archivio, ma saremmo lieti di ricevere un piccolo contributo tramite PayPal.
Sostieni Lo Sguardo
Support Lo Sguardo
Lo Sguardo is a full open access project. You can download all the articles for free, but we will be glad to receive a little support through PayPal.
Lo Sguardo è un progetto full open access. Puoi scaricare gratuitamente tutto il nostro archivio, ma saremmo lieti di ricevere un piccolo contributo tramite PayPal.
Sostieni Lo Sguardo
Support Lo Sguardo
Lo Sguardo is a full open access project. You can download all the articles for free, but we will be glad to receive a little support through PayPal.
Iscriviti alla nostra newsletter
Lasciaci il tuo indirizzo email per rimanere aggiornato sulle nostre novità.